Generating and Extracting Rotational Displacement#

In this example we show how to work with shells and rotation displacements.

Not all element types have rotational degrees of freedom, but generally, “shell” ones do. In this example we create a square shell with thickness of 0.1 and bend it, creating rotational displacement.

We subsequently plot the cumulative principal stresses and use ansys.mapdl.core.inline_functions.Query to extract the exact values of rotational displacement at the four corners of our square.

# start MAPDL and enter the pre-processing routine
from ansys.mapdl.core import launch_mapdl

mapdl = launch_mapdl()
mapdl.prep7()
*****MAPDL VERIFICATION RUN ONLY*****
     DO NOT USE RESULTS FOR PRODUCTION

          ***** MAPDL ANALYSIS DEFINITION (PREP7) *****

Mesh Setup#

In this example we create a simple 2D square, 1 x 1 in dimension, and give it the ‘SHELL181’ element type because this type has rotational degrees of freedom. Following this we:

  • Give the material an elastic modulus of 2e5 (EX)

  • Give the material a major poissons ratio of 0.3 (PRXY)

  • Set the section type to ‘SHELL’

  • Set the thickness to 0.1

  • Set the element size to 0.2

  • Mesh the square

  • Plot the mesh

mapdl.et(1, "SHELL181")
mapdl.mp("EX", 1, 2e5)
mapdl.mp("PRXY", 1, 0.3)
mapdl.rectng(0, 1, 0, 1)
mapdl.sectype(1, "SHELL")
mapdl.secdata(0.1)
mapdl.esize(0.2)
mapdl.amesh("all")
mapdl.eplot()
04 rotational displacement

Applying Boundary Conditions#

  • Enter solution mode

  • Set analysis type to ‘STATIC’

  • Remove all degrees of freedom for nodes at x = 0

  • Apply a displacement of uz = -0.1 at x = 1

  • Select all nodes

  • Solve the model

mapdl.run("/SOLU")
mapdl.antype("STATIC")
mapdl.nsel("s", "loc", "x", 0)
mapdl.d("all", "all")
mapdl.nsel("s", "loc", "x", 1)
mapdl.d("all", "uz", -0.1)
mapdl.allsel("all")
mapdl.solve()
*****  MAPDL SOLVE    COMMAND  *****

 *** NOTE ***                            CP =       0.000   TIME= 00:00:00
 There is no title defined for this analysis.

 *** SELECTION OF ELEMENT TECHNOLOGIES FOR APPLICABLE ELEMENTS ***
                ---GIVE SUGGESTIONS ONLY---

 ELEMENT TYPE         1 IS SHELL181. IT IS ASSOCIATED WITH ELASTOPLASTIC
 MATERIALS ONLY. KEYOPT(8)=2 IS SUGGESTED AND KEYOPT(3)=2 IS SUGGESTED FOR
 HIGHER ACCURACY OF MEMBRANE STRESSES; OTHERWISE, KEYOPT(3)=0 IS SUGGESTED.


   *****MAPDL VERIFICATION RUN ONLY*****
     DO NOT USE RESULTS FOR PRODUCTION

                       S O L U T I O N   O P T I O N S

   PROBLEM DIMENSIONALITY. . . . . . . . . . . . .3-D
   DEGREES OF FREEDOM. . . . . . UX   UY   UZ   ROTX ROTY ROTZ
   ANALYSIS TYPE . . . . . . . . . . . . . . . . .STATIC (STEADY-STATE)
   GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC

 *** NOTE ***                            CP =       0.000   TIME= 00:00:00
 Present time 0 is less than or equal to the previous time.  Time will
 default to 1.

 *** NOTE ***                            CP =       0.000   TIME= 00:00:00
 The conditions for direct assembly have been met.  No .emat or .erot
 files will be produced.



     D I S T R I B U T E D   D O M A I N   D E C O M P O S E R

  ...Number of elements: 25
  ...Number of nodes:    36
  ...Decompose to 0 CPU domains
  ...Element load balance ratio =     0.000


                      L O A D   S T E P   O P T I O N S

   LOAD STEP NUMBER. . . . . . . . . . . . . . . .     1
   TIME AT END OF THE LOAD STEP. . . . . . . . . .  1.0000
   NUMBER OF SUBSTEPS. . . . . . . . . . . . . . .     1
   STEP CHANGE BOUNDARY CONDITIONS . . . . . . . .    NO
   PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT
   DATABASE OUTPUT CONTROLS. . . . . . . . . . . .ALL DATA WRITTEN
                                                  FOR THE LAST SUBSTEP


 *** NOTE ***                            CP =       0.000   TIME= 00:00:00
 Predictor is ON by default for structural elements with rotational
 degrees of freedom.  Use the PRED,OFF command to turn the predictor
 OFF if it adversely affects the convergence.


 Range of element maximum matrix coefficients in global coordinates
 Maximum = 7487.02512 at element 0.
 Minimum = 7487.02512 at element 0.

   *** ELEMENT MATRIX FORMULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1        25  SHELL181      0.000   0.000000
 Time at end of element matrix formulation CP = 0.

 DISTRIBUTED SPARSE MATRIX DIRECT SOLVER.
  Number of equations =         174,    Maximum wavefront =      0
  Memory available (MB) =    0.0    ,  Memory required (MB) =    0.0

 Distributed sparse solver maximum pivot= 0 at node 0 .
 Distributed sparse solver minimum pivot= 0 at node 0 .
 Distributed sparse solver minimum pivot in absolute value= 0 at node 0
 .

   *** ELEMENT RESULT CALCULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1        25  SHELL181      0.000   0.000000

   *** NODAL LOAD CALCULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1        25  SHELL181      0.000   0.000000
 *** LOAD STEP     1   SUBSTEP     1  COMPLETED.    CUM ITER =      1
 *** TIME =   1.00000         TIME INC =   1.00000      NEW TRIANG MATRIX

Plotting Stresses#

  • Extract the results

  • Plot the cumulative (0) equivalent stress (SEQV) - Set the colormap to ‘plasma’ because it is perceptually uniform - Show displacement so that we can see any deformation

result = mapdl.result
result.plot_principal_nodal_stress(
    0, "SEQV", show_edges=True, cmap="plasma", show_displacement=True
)
04 rotational displacement

Extracting Rotational Displacements#

  • Get a ansys.mapdl.core.inline_functions.Query instance from the queries property

  • Locate the nodes at the four corners of the square

  • Extract all 3 rotational displacement components for each one

  • Print them all

q = mapdl.queries

node1 = q.node(0, 0, 0)
node2 = q.node(0, 1, 0)
node3 = q.node(1, 0, 0)
node4 = q.node(1, 1, 0)

nodes = [node1, node2, node3, node4]

rotations = [(q.rotx(n), q.roty(n), q.rotz(n)) for n in nodes]

message = f"""
(0,1) B _________ C (1,1)
       |         |
       |         |
       |         |
       |_________|
(0,0) A           D (1,0)

N | (x_rot_disp, y_rot_disp, z_rot_disp)
--|------------------------------------
A | {rotations[0][0]:11.6f},{rotations[0][1]:11.6f},{rotations[0][2]:11.6f}
B | {rotations[1][0]:11.6f},{rotations[1][1]:11.6f},{rotations[1][2]:11.6f}
C | {rotations[2][0]:11.6f},{rotations[2][1]:11.6f},{rotations[2][2]:11.6f}
D | {rotations[3][0]:11.6f},{rotations[3][1]:11.6f},{rotations[3][2]:11.6f}

"""

print(message)
(0,1) B _________ C (1,1)
       |         |
       |         |
       |         |
       |_________|
(0,0) A           D (1,0)

N | (x_rot_disp, y_rot_disp, z_rot_disp)
--|------------------------------------
A |    0.000000,   0.000000,   0.000000
B |    0.000000,   0.000000,   0.000000
C |   -0.000996,   0.155360,   0.000000
D |    0.000996,   0.155360,   0.000000

Stop mapdl#

mapdl.exit()

Total running time of the script: (0 minutes 1.247 seconds)