Torsional load on a bar using SURF154 elements#

This Ansys PyMAPDL script builds a bar and applies torque to it using SURF154 elements. This is a static analysis example.

Script initialization#

import os

import numpy as np

from ansys.mapdl.core import launch_mapdl

# start Ansys in the current working directory with default jobname "file"
mapdl = launch_mapdl(run_location=os.getcwd(), version=23.1)

Define cylinder and mesh parameters

torque = 100
radius = 2
h_tip = 2
height = 20
elemsize = 0.5
pi = np.arccos(-1)
force = 100 / radius
pressure = force / (h_tip * 2 * np.pi * radius)

Model creation#

# Define higher-order SOLID186
# Define surface effect elements SURF154 to apply torque
# as a tangential pressure
mapdl.prep7()
mapdl.et(1, 186)
mapdl.et(2, 154)
mapdl.r(1)
mapdl.r(2)
REAL CONSTANT SET          2  ITEMS   1 TO   6
    0.0000       0.0000       0.0000       0.0000       0.0000       0.0000

Aluminum properties (or something)

mapdl.mp("ex", 1, 10e6)
mapdl.mp("nuxy", 1, 0.3)
mapdl.mp("dens", 1, 0.1 / 386.1)
mapdl.mp("dens", 2, 0)

# Simple cylinder
for i in range(4):
    mapdl.cylind(radius, "", "", height, 90 * (i - 1), 90 * i)

mapdl.nummrg("kp")

# interactive volume plot (optional)
mapdl.vplot()
  • torsional load
  • torsional load
  • torsional load
  • torsional load
  • torsional load

Mesh cylinder

mapdl.lsel("s", "loc", "x", 0)
mapdl.lsel("r", "loc", "y", 0)
mapdl.lsel("r", "loc", "z", 0, height - h_tip)
mapdl.lesize("all", elemsize * 2)
mapdl.mshape(0)
mapdl.mshkey(1)
mapdl.esize(elemsize)
mapdl.allsel("all")
mapdl.vsweep("ALL")
mapdl.csys(1)
mapdl.asel("s", "loc", "z", "", height - h_tip + 0.0001)
mapdl.asel("r", "loc", "x", radius)
mapdl.local(11, 1)
mapdl.csys(0)
mapdl.aatt(2, 2, 2, 11)
mapdl.amesh("all")
mapdl.finish()

# plot elements
mapdl.eplot()
torsional load

Solution#

mapdl.slashsolu()  # Using Slash instead of / due to duplicate SOLU command
mapdl.antype("static", "new")
mapdl.eqslv("pcg", 1e-8)

# Apply tangential pressure
mapdl.esel("s", "type", "", 2)
mapdl.sfe("all", 2, "pres", "", pressure)

# Constrain bottom of cylinder/rod
mapdl.asel("s", "loc", "z", 0)
mapdl.nsla("s", 1)

mapdl.d("all", "all")
mapdl.allsel()
mapdl.psf("pres", "", 2)
mapdl.pbc("u", 1)
mapdl.solve()
*****  MAPDL SOLVE    COMMAND  *****

 *** NOTE ***                            CP =       0.000   TIME= 00:00:00
 There is no title defined for this analysis.

 *** WARNING ***                         CP =       0.000   TIME= 00:00:00
 It has been detected that you are using reduced integration brick
 elements along with the PCG solver (EQSLV,PCG).  Please verify that
 you have multiple elements through the thickness in your model or
 switch to the SPARSE solver (EQSLV,SPARSE).

 *** NOTE ***                            CP =       0.000   TIME= 00:00:00
 The model data was checked and warning messages were found.
  Please review output or errors file ( ) for these warning messages.

 *** SELECTION OF ELEMENT TECHNOLOGIES FOR APPLICABLE ELEMENTS ***
                ---GIVE SUGGESTIONS ONLY---

 ELEMENT TYPE         1 IS SOLID186. KEYOPT(2) IS ALREADY SET AS SUGGESTED.


   *****MAPDL VERIFICATION RUN ONLY*****
     DO NOT USE RESULTS FOR PRODUCTION

                       S O L U T I O N   O P T I O N S

   PROBLEM DIMENSIONALITY. . . . . . . . . . . . .3-D
   DEGREES OF FREEDOM. . . . . . UX   UY   UZ
   ANALYSIS TYPE . . . . . . . . . . . . . . . . .STATIC (STEADY-STATE)
   EQUATION SOLVER OPTION. . . . . . . . . . . . .PCG
      TOLERANCE. . . . . . . . . . . . . . . . . . 1.00000E-08
   GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC

 *** NOTE ***                            CP =       0.000   TIME= 00:00:00
 Present time 0 is less than or equal to the previous time.  Time will
 default to 1.

 *** NOTE ***                            CP =       0.000   TIME= 00:00:00
 The conditions for direct assembly have been met.  No .emat or .erot
 files will be produced.



     D I S T R I B U T E D   D O M A I N   D E C O M P O S E R

  ...Number of elements: 2080
  ...Number of nodes:    7217
  ...Decompose to 0 CPU domains
  ...Element load balance ratio =     0.000


                      L O A D   S T E P   O P T I O N S

   LOAD STEP NUMBER. . . . . . . . . . . . . . . .     1
   TIME AT END OF THE LOAD STEP. . . . . . . . . .  1.0000
   NUMBER OF SUBSTEPS. . . . . . . . . . . . . . .     1
   STEP CHANGE BOUNDARY CONDITIONS . . . . . . . .    NO
   PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT
   DATABASE OUTPUT CONTROLS. . . . . . . . . . . .ALL DATA WRITTEN
                                                  FOR THE LAST SUBSTEP



 *** NOTE ***                            CP =       0.000   TIME= 00:00:00
 The PCG solver has automatically set the level of difficulty for this
 model to 2.


                         ***********  PRECISE MASS SUMMARY  ***********

   TOTAL RIGID BODY MASS MATRIX ABOUT ORIGIN
               Translational mass               |   Coupled translational/rotational mass
        0.65094E-01    0.0000        0.0000     |     0.0000       0.65094      -0.13505E-11
         0.0000       0.65094E-01    0.0000     |   -0.65094        0.0000      -0.10297E-11
         0.0000        0.0000       0.65094E-01 |    0.13505E-11   0.10297E-11    0.0000
     ------------------------------------------ | ------------------------------------------
                                                |         Rotational mass (inertia)
                                                |     8.7442      -0.69065E-09   0.10297E-10
                                                |   -0.69065E-09    8.7442      -0.13505E-10
                                                |    0.10297E-10  -0.13505E-10   0.13019

   TOTAL MASS = 0.65094E-01
     The mass principal axes coincide with the global Cartesian axes

   CENTER OF MASS (X,Y,Z)=  -0.15819E-10   0.20747E-10    10.000

   TOTAL INERTIA ABOUT CENTER OF MASS
         2.2349      -0.69065E-09   0.13444E-15
       -0.69065E-09    2.2349       0.10083E-16
        0.13444E-15   0.10083E-16   0.13019
     The inertia principal axes coincide with the global Cartesian axes


  *** MASS SUMMARY BY ELEMENT TYPE ***

  TYPE      MASS
     1  0.650935E-01

 Range of element maximum matrix coefficients in global coordinates
 Maximum = 13418503.5 at element 0.
 Minimum = 7047120.98 at element 0.

   *** ELEMENT MATRIX FORMULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1      1520  SOLID186      0.000   0.000000
        2       560  SURF154       0.000   0.000000
 Time at end of element matrix formulation CP = 0.

   *** ELEMENT RESULT CALCULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1      1520  SOLID186      0.000   0.000000
        2       560  SURF154       0.000   0.000000

   *** NODAL LOAD CALCULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1      1520  SOLID186      0.000   0.000000
        2       560  SURF154       0.000   0.000000
 *** LOAD STEP     1   SUBSTEP     1  COMPLETED.    CUM ITER =      1
 *** TIME =   1.00000         TIME INC =   1.00000      NEW TRIANG MATRIX

Post-processing#

# Enter post-processor
mapdl.post1()
# Select the step you want to analyse
mapdl.set(1, 1)
USE LOAD STEP     1  SUBSTEP     1  FOR LOAD CASE 0

 SET COMMAND GOT LOAD STEP=     1  SUBSTEP=     1  CUMULATIVE ITERATION=     1
   TIME/FREQUENCY=  1.0000
 TITLE=

Access element results as arrays

nodal_stress = mapdl.post_processing.nodal_stress_intensity()
elem_stress = mapdl.post_processing.element_stress("int")

print("Nodal stress : ", nodal_stress)
print("Element stress : ", elem_stress)
Nodal stress :  [1.40047791 1.24142178 1.7059947  ... 0.         0.         0.        ]
Element stress :  [139.73499422 132.17428184 124.98840991 ...   0.           0.
   0.        ]

Plot interactively#

mapdl.post_processing.plot_nodal_displacement(cmap="bwr")
mapdl.post_processing.plot_nodal_component_stress("x", cmap="bwr")
mapdl.post_processing.plot_nodal_eqv_stress(cmap="bwr")
  • torsional load
  • torsional load
  • torsional load

Plot non-interactively#

# Setting up the correct camera angle
cpos = [
    (20.992831318277517, 9.78629316586435, 31.905115108541928),
    (0.35955395443745797, -1.4198191001571547, 10.346158032932495),
    (-0.10547549888485548, 0.9200673323892437, -0.377294345312956),
]

mapdl.post_processing.plot_nodal_displacement(
    cmap="bwr", cpos=cpos, savefig="cylinder_disp.png"
)
mapdl.post_processing.plot_nodal_component_stress(
    "x", cmap="bwr", cpos=cpos, savefig="cylinder_comp_stx.png"
)
mapdl.post_processing.plot_nodal_eqv_stress(
    cmap="bwr", cpos=cpos, savefig="cylinder_eqv_st.png"
)
  • torsional load
  • torsional load
  • torsional load

Stop MAPDL

mapdl.finish()
mapdl.exit()

Total running time of the script: (0 minutes 25.100 seconds)